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Abstract

We present a new way of embedding functional languages
into the Coq proof assistant by using meta-programming.
This allows us to develop the meta-theory of the language
using the deep embedding and provides a convenient way
for reasoning about concrete programs using the shallow em-
bedding. We connect the deep and the shallow embeddings
by a soundness theorem. As an instance of our approach,
we develop an embedding of a core smart contract language
into Coq and verify several important properties of a crowd-
funding contract based on a previous formalisation of smart
contract execution in blockchains.

CCS Concepts · Theory of computation → Logic and

verification; Program verification; Type theory; Program
semantics; · Software and its engineering → Correct-

ness; Formal software verification; Software verification.
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1 Introduction

The concept of blockchain-based smart contracts has evolved
in several ways since its appearance. Starting from the re-
stricted and non-Turing-complete Bitcoin script1 designed to
validate transactions, the idea of smart contracts expanded
to fully-featured languages such as Solidity running on the
Ethereum Virtual Machine (EVM).2 Recent research on smart
contract verification discovered the presence of multiple
vulnerabilities in many smart contracts written in Solid-
ity [13, 19]. Several times the issues in smart contract imple-
mentations resulted in huge financial losses (for example, the
DAO contract and the Parity multi-sig wallet on Ethereum).
The setup for smart contracts is unique: once deployed, they
cannot be changed and any small mistake in the contract
logic may lead to serious financial consequences. This shows
not only the importance of formal verification of smart con-
tracts but also the importance of principled programming
language design. The third generation smart contract lan-
guages tend to employ the functional programming para-
digm. A number of blockchain implementations have already
adopted certain variations of functional languages as a smart
contract language. These languages range from minimalis-
tic and low-level (Simplicity [15], Michelson3), intermediate
(Scilla [20]) to fully-featured OCaml- and Haskell-like lan-
guages (Liquidity [6], Plutus [7, 17]). There is a very good
reason for this tendency. Statically typed functional program-
ming languages can rule out many errors. Moreover, due to
the absence (or more precise control) of side effects programs
in functional languages behave like mathematical functions,
which facilitates reasoning about them. However, one can-
not hope to perform only stateless computations: the state
is inherent for blockchains. One way to approach this is to
limit the ways of changing the state. While Solidity allows
arbitrary state modifications at any point of execution, many
modern smart contract languages represent smart contract
execution as a function from a current state to a new state.
This functional nature of modern smart contract languages
makes them well-suited for formal reasoning.

1Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf
2Ethereum’s white paper:
https://github.com/ethereum/wiki/wiki/White-Paper
3https://www.michelson-lang.com/
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The Ethereum Virtual Machine and the Solidity smart
contract language remain one of the most used platforms
for writing smart contacts. Due to the permissiveness of the
underlying execution model and the complexity of the lan-
guage, verification in this setting is quite challenging. On
the other hand, many modern languages such as Acorn,4

Liquidity and Scilla, offer a different execution model and
a type system allowing to rule out many errors through
type checking. Of course, many important properties are
not possible to capture even with powerful type systems
of functional smart contract languages. For that reason, to
provide even higher guarantees, such as functional correct-
ness, one has to resort to stronger type systems/logics for
reasoning about programs and employ deductive verifica-
tion techniques. Among various tools for that purpose proof
assistants provide a versatile solution for that problem.
Proof assistants or interactive theorem provers are tools

that allow users to state and prove theorems interactively.
Proof assistants often offer some degree of proof automation
by implementing decision and semi-decision procedures, or
interacting with automated theorem provers (SAT and SMT
solvers). Some proof assistants allow for writing user-defined
automation scripts, or write extensions using a plug-in sys-
tem. This is especially important, since many properties of
programs are undecidable and providing users with a conve-
nient way of interactive proving while retaining a possibility
to do automatic reasoning makes proof assistants very flexi-
ble tools for verification of smart contracts.
Existing formalisations of functional smart contract lan-

guages mostly focus on meta-theory (Plutus [7], Simplic-
ity [15]) or meta-theory and verification using the deep em-
bedding (Michelson [5]). An exception is Scilla [20], which
features verification of particular smart contracts in the Coq
proof assistant by means of shallow embedding by hand.
Simplicity [15] is a low-level combinator-based functional
language and its formalisation allows for translating from
deep to shallow embeddings for purposes of meta-theoretic
reasoning. None of these developments combines deep and
shallow embeddings for a high-level functional smart con-
tract language in one framework or provide an automatic
way of converting smart contracts to Coq programs for con-
venient verification of concrete smart contracts. We are mak-
ing a step towards this direction by allowing for deep and
shallow embeddings to coexist and interact in Coq.
The contributions of this paper are the following:

1. We develop an approach to verify properties of func-
tional programming languages and of individual pro-
grams in one framework. In particular, this approach
works for functional smart contract languages and
concrete contracts.

4The Acorn language is an ML-style functional smart contract language
currently under development at the Concordium Foundation.

2. We describe a novel way of combining deep and shal-
low embeddings using the meta-programming facili-
ties of Coq (MetaCoq [3]).

3. As an instance of our approach, we define the syntax
and semantics of λsmart Ð a core subset of the Acorn
language (the deep embedding) and the corresponding
translation of λsmart programs into Coq functions (the
shallow embedding).

4. We prove properties of a crowdfunding contract given
as a deep embedding (abstract syntax tree) of a λsmart

program.
5. We integrate our shallow embedding with the smart

contract execution framework [14] allowing for prov-
ing safety and temporal properties of interacting smart
contracts.

We discuss the details of our approach in Section 2, pro-
vide an example of a crowdfunding contract verification in
Section 3. In Section 4 we apply our framework to verify a
Listmodule of the Acorn standard library and discuss how
our development integrates with the execution framework
in Section 5. Theorems from Section 2.4 and lemmas from
Sections 3, 4 and 5 are proved in our Coq development and
available at https://github.com/AU-COBRA/ConCert/tree/

artefact.

2 Our Approach

There are various ways of reasoning about properties of a
functional programming language in a proof assistant. First,
let us split the properties into two groups: meta-theoretical
properties (properties of a language itself) and properties of
programs written in the language. Since we are focused on
functional smart contract languages and many proof assis-
tants come with a built-in functional language, it is reason-
able to assume that we can reuse the programming language
of a proof assistant to express smart contracts and reason
about their properties. A somewhat similar approach is taken
by the authors of the hs-to-coq library [23], which translates
total Haskell programs to Coq by means of source-to-source
transformation. Unfortunately, in this case, it is impossible
to reason about the correctness of the translation.
We would like to have two representations of functional

programs within the same framework: a deep embedding
in the form of an abstract syntax tree (AST), and a shallow
embedding as a Coq function. While the deep embedding
is suitable for meta-theoretical reasoning, the shallow em-
bedding is convenient for proving properties of concrete
programs. We use the meta-programming facilities of the
MetaCoq plug-in [3] to connect the two ways of reasoning
about functional programs.
The overview of the structure of the framework is given

in Figure 1. As opposed to source-to-source translations in
the style of hs-to-coq [23] and coq-of-ocaml5 we would like

5The coq-of-ocaml project page: https://github.com/clarus/coq-of-ocaml
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Figure 1. The structure of the framework

for all the non-trivial transformations to happen in Coq. This
makes it possible to reason within Coq about the translation
and formalise the required meta-theory for the language.
That is, we start with an AST of a program in a functional
language implemented in Haskell, OCaml or some other lan-
guage, then we generate an AST represented using the con-
structors of the corresponding inductive type in Coq (deep
embedding) by printing the desugared AST of the program.
By printing we mean a recursive procedure that converts
the AST into a string consisting of the constructors of our
Coq representation. The main idea is that this procedure
should be as simple as possible and does not involve any
non-trivial manipulations since it will be part of a trusted
code base. If non-trivial transformations are required, they
should happen within the Coq implementation.

2.1 MetaCoq

The MetaCoq project [3] brings together several subprojects
united by the use of meta-programming and formalisation
of Coq’s meta-theory in Coq. In particular, relevant for this
project:

• Template Coq Ð adds meta-programming facilities to
Coq. That is, it provides a way to quote Coq definitions
by producing an AST represented as an inductive data
type term in Coq, and unquote a well-formed inhabitant
of term back to a Coq definition.
• PCUIC Ð formalisation of the meta-theory of Polymor-
phic Cumulative Calculus of Inductive Constructions
(PCUIC), an underlying calculus of Coq.6

These features ofMetaCoq have been used for defining var-
ious syntactic translations from Calculus of Inductive Con-
structions (CIC) to itself (e.g. parametricity translation [4]),
developing a certified compiler CertiCoq [2] and for certify-
ing extraction of Coq terms to the untyped lambda-calculus [10]

Let us consider a simple example demonstrating the quote/un-
quote functionality.

(* Quote *)

Quote Definition id_nat_syn := (fun x : nat⇒ x).

Print id_nat_syn.

(* tLambda (nNamed "x")

(tInd (mkInd "nat" 0) []) (Ast.tRel 0) : term *)

6From now on, we will use MetaCoq to refer both to the quote/unquote
functionality and to the formalisation of meta-theory.

(* Unquote *)

Make Definition plus_one :=

(tLambda (nNamed "x") (tInd (mkInd "nat" 0 ) [])

(tApp (tConstruct (mkInd "nat" 0) 1 []) [tRel 0])).

Print plus_one.

(* fun x : nat ⇒ S x : nat → nat *)

Our use of MetaCoq explores a new way of using meta-
programming in Coq. All existing use cases follow (roughly)
the following procedure: start with a Coq term, quote it
and perform certain transformations (e.g. syntactic transla-
tion, erasure, etc.). In our approach, we go in the different
direction: starting with the AST of a program in a func-
tional language we want to reason about, through a series of
transformations we produce a MetaCoq AST, which is then
unquoted into a program in Coq’s Gallina language (shallow
embedding). The transformations include conversion from
the named to the nameless representation (if required) and
translation into the MetaCoq AST. The deep embedding also
serves as input for developing meta-theory of the functional
language.

2.2 The λsmart Language

As an instance of our approach, we develop an embedding
of the łcorež of the Acorn smart contract language into Coq.
We call this core language λsmart. This language contains
all the essential features of a realistic functional language:
System F type system, inductive types, general recursion and
pattern-matching. The grammar of the language is given
below.

τ σ ::= î | I | ∀A.τ | τ σ | τ → σ

p ::= C x1 . . . xn

e ::= i | λx : τ .e | ΛA.e | let x : τ = e1 in e2 | e1 e2

| case e : I τ1 . . . τn return σ of

p1 → e1; . . . ;pm → em

| CI | fix f x : τ1 → τ2 = e | τ

Here I , C , A, x and f range over strings representing names
of inductive types, constructors, type variable names, vari-
able names and fixpoint names respectively.We use de Bruijn
indices to represent variables both in expressions and types
(denoted i and î respectively). Textual names A, x and f
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are only needed for decoration purposes making resulting
Coq code more readable. Note, that λsmart expressions are
extensively annotated with typing information. For instance,
we annotate lambda abstractions with the domain type, for
fixpoints we store the types for the domain and for the
codomain. Moreover, case-expressions require explicit type
of branches.
The semantics of λsmart is given as a definitional inter-

preter [18]. This gives us an executable semantics for the
language. Moreover, since the core language we consider is
sufficiently close to Acorn, our interpreter can serve as a
reference interpreter. The interpreter is implemented in an
environment-passing style and works both with named and
nameless representations of variables. Due to the potential
non-termination, we define our interpreter using the fuel
idiom: by structural recursion on an additional argument (a
natural number). The interpreter function has the following
type:7

eval : global_env→ nat→ env val→ expr→ res val

We will use the notation evaln
Σ,ρ (e) to mean eval Σ n ρ e. The

global_env parameter provides mappings from names of in-
ductives to their constructors. The next three parameters
are: łfuelž, an evaluation environment and a λsmart expres-
sion. Note that łfuelž has a different meaning than łgasž for
smart contracts: łfuelž is used to limit the recursion depth to
ensure termination and not as a measure of computational
efforts. The resulting type is res val, where res is a error
monad. The errors could be either NotEnoughFuel denoting
that fuel provided was not sufficient to complete the execu-
tion, or EvalError denoting that execution is stuck. In our
Coq development EvalError also carries a error message.
Values val are defined as follows:

v ::= vConstr(I ,C,v1 . . .vn)

| vClosLam(ρ,x ,τ , e)

| vClosFix(ρ, f ,x ,τ1,τ2, e)

| vTyClos(ρ,A, e) | vTy(τ )

Note that we annotate our value with types and variable
names. This is required to match the λsmart interpreter with
the MetaCoq evaluation relation (see Section 2.4).

The outline of the most interesting parts of our interpreter
is given in Figure 2. Specifically, we show the evaluation of
fixpoints and case-expressions. The rest is quite standard
and not essentially different from other works using defini-
tional interpreters (e.g. [1]). An essential part of the fixpoint
evaluation is how we extend the evaluation environment ρ:
we evaluate the body of the fixpoint e in the environment

7In our development, the interpreter supports twomodes of evaluation: with
named variables and with de Bruijn representation of variables (nameless).
For the purposes of this paper, we will focus on the nameless mode.

extended with the closure of the fixpoint itself which corre-
sponds to the recursive call. A fixpoint binds two variables:
the outermost one corresponds to the recursive call and the
innermost is a fixpoint’s argument. Thus evaluating the fix-
point’s body in the environment v2 :: v1 :: ρ ensures that
once we hit a variable corresponding to the recursive call it
will be replaced with the body of the fixpoint again. Note
that we perform an additional check if v2 is a constructor of
an inductive type (possibly applied to some arguments). This
is necessary to match the evaluation of λsmart expressions
with the MetaCoq evaluation relation. Therefore, it is not
possible to pass a function as an argument to a λsmart fixpoint.
Although this sounds limiting, the main point of the λsmart

semantics is to prove the correctness of the embedding to
Coq and fixpoints in Coq are limited to structurally recursive
definitions.
When evaluating case expressions, our interpreter first

evaluates all the types (parameters of the inductive and the
type of branches), then the discriminee, and if the latter eval-
uates to a constructor, executes a simple pattern-matching
algorithm. The match_pat function returns a branch that
matches the discriminee. Next, we evaluate the body of the
selected branch in the environment extended with the re-
verse list of the constructor’s arguments.

Note that our interpreter evaluates all the type expressions.
This is required since we want to match λsmart evaluation
with the evaluation relation of MetaCoq, which evaluates
corresponding types. The type evaluation function eval_ty :
env val × type → res type essentially just substitutes
values from the evaluation environment and fails if there is
no corresponding value found.
Note that we perform some validation of expressions

against the evaluation environment. This is again required
for our soundness result. We will discuss these questions in
Section 2.4.

2.3 Translation to MetaCoq

We define the translations from the AST of λsmart expressions
expr and types type to MetaCoq abstract syntax term by
structural recursion.8 On Figure 3 we outline the transla-
tion functions. We use Haskell-like notation and blue colour
for λsmart expressions and types and Coq-like notation and
green colour for MetaCoq terms. We assume that the global
environment Σ : global_env contains all inductive type
definitions mentioned in λsmart expressions. Under this as-
sumption the translation function J−Kt

Σ
is total.

In λsmart, we have two kinds of de Bruijn indices: the one
for type variables î and the one for term variables i . In the

8ByMetaCoq termwemean a corresponding inductive type from the PCUIC
formalisation. In our Coq development, before unquoting a PCUIC term,
we translate it into a kernel representation. This translation is almost one-
to-one, apart from the application case: it is unary in PCUIC and n-ary in
the kernel representation, but this part is quite straightforward to handle.
Eventually, this translation will be included in the MetaCoq project
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eval0
Σ,ρ
(e)

def
= NotEnoughFuel

evalS n
Σ,ρ
(e)

def
= match e with

. . .

| fix f x : τ1 → τ2 = e ⇒

τ ′1 ← eval_ty(τ1);

τ ′2 ← eval_ty(τ2);

validate(ρ, 2, e);

Ok (vClosFix(ρ, f , x, τ ′1, τ
′
2, e))

| e1 e2 ⇒ v2 ← evaln
Σ,ρ
(e2);

v1 ← evaln
Σ,ρ
(e1);

match v1 with

. . .

| vClosFix(ρ, f , x, τ1, τ2, e) ⇒

if isConstr(v2) then evaln
Σ,v2 ::v1 ::ρ

(e)

else EvalError

end

| case e : I τ1 . . . τk return σ of bs⇒

validate_branches(ρ, bs);

_← eval_ty(σ );

_← monad_map eval_ty [τ1; . . . ; τk ];

v ← evaln
Σ,ρ
(e);

match v with

| vConstr(I ′, C, args) ⇒

let(_, tys) := resolve_ctor(Σ, I ′, C) in

if (I = I ′) then

e′ ← match_pat(C, n, tys, args, bs);

evaln
Σ,rev(args)++ρ

(e′)

else EvalError

| _⇒ EvalError

end

end

Figure 2. λsmart interpreter.

translation, we map both of them to the single kind of in-
dices of MetaCoq. Constructors are translated to MetaCoq
constructors by first looking up the corresponding construc-
tor number in the global environment. In MetaCoq (and in
the kernel of Coq) constructors are represented as numbers
corresponding to the position of a constructor in the list of
constructors for a given inductive type. The type of global
environments global_env is a list of definitions of inductive
type. The functions

resolve_ind : global_env × ident

→ option (list constr)

resolve_ctor : global_env × ident × ident

→ option (N × constr)

are used to look up for inductive type and their construc-
tors. Particularly, resolve_ind returns a list of construc-
tors for a given textual name of an inductive type, while
resolve_ctor returns a position of a constructor in the
list of constructor definitions and the constructor definition
itself. Translation of a λsmart constructorCI looks up the cor-
responding constructor position in the list of constructors
for the inductive I , a translated constructor in MetaCoq is
basically a number (a position) annotated with the name of
the inductive type: CI (and universes, but these are not rele-
vant for us right now). In the translation of fix, the type of
a fixpoint is translated into a Π-type in MetaCoq. Therefore,
the indices of free variables in the codomain type must be
incremented (łliftedž) by 1, since Π-types bind a variable.
We denote such increments by n as ↑n . The other feature
of the fixpoint translation is that the body of a fixpoint in
MetaCoq becomes a lambda abstraction and since all lambda
abstractions must be explicitly annotated with a type of the
domain, we provide this type. Again, we have to lift free
variables in the type, because the outermost variable index
corresponds to the body of the fixpoint itself.

By far the most complex translation case is the pattern-
matching. The first complication stems to the representation
of branches for match in MetaCoq: the branches should be
arranged in the same order as constructors in the definition
of the corresponding inductive type. In this case, there is no
need to store constructor names in each pattern. On the other
hand, in λsmart we choosemore user-friendly implementation:
patterns are explicitly named after constructors and might
follow in an order that is different from how the order in the
inductive type definition. For that reason, we first resolve
the inductive type from the global environment to get a list
of constructors. Then, for each constructor in the list, we
call the branch function. As one can see from Figure 3, the
translated branches follow the same order as in they appear
in the list of resolved constructors, i.e. c1 . . . cm .
The second difficulty arises from the pattern represen-

tation. In MetaCoq, patterns are desugared to more basic
building blocks: lambda abstractions. Therefore, every pat-
tern becomes an iterated lambda term. Before we explain
how the branch function works, let us first describe the rep-
resentation of inductive types in the global environment.
Each inductive type definition consists of a name, number
of parameters, and the list of constructors. In turn, each con-
structor consists of a name and a list of argument types. Since
λsmart’s type system does not feature dependent types, it is
sufficient to store a list of arguments for each constructor
instead of a full type. Each type in the list of constructor
arguments can refer to parameters as if they were bound at
the top level for each type. For example, the type of finite
maps (in the form of association lists) would look like the
following (we use concrete syntax here for the presentation
purposes):

data AcornMap #2 = MNil [] | MCons [1̂, 0̂, AcornMap 1̂ 0̂]
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In the example above, AcornMap has two parameters (the num-
ber of parameters is specified after the type name): a type of
keys, and a type of values. The MNil constructor does not take
any arguments, and MCons takes a key, a value and an inhab-
itant of AcornMap. Given this representation of constructors,
we continue the explanation of the pattern-matching transla-
tion. When pattern-matching on a parameterised inductive,
the inductive is applied to some parameters. In order to prop-
agate these parameters to the corresponding constructors,
we have to substitute the concrete parameters into each type
in the constructor arguments list. We use t

{

ts
}

to denote the
MetaCoq parallel substitution of a list of terms ts into a term
t. In the branch function, we first look up a branch body e
in the list of branches by comparing the constructor name
to the pattern name. Next, we project constructor argument
types from a given constructor. Further, since patterns be-
come iterated lambdas in MetaCoq, we need to provide a
type for each abstracted variable. Since Coq is dependently
typed, variables bound by each lambda abstraction might ap-
pear in the types that appear later in the term. Thus, to avoid
variable capture in types of lambda arguments, we need to
lift the translated types. This is exactly what happens in the
branch function: the resulting MetaCoq term is an iterated
lambda abstraction and each argument type is lifted accord-
ing to the number of preceding lambda abstractions in the
translation of a pattern.
The translation of types is mostly straightforward. For

the universal types, we choose to produce a Π-type with
the domain in Set. Such a choice allows us to avoid dealing
with universe levels explicitly, as it is required in MetaCoq.
The translation we present works only for a predicative frag-
ment of λsmart, but Acorn’s surface language supports only
a prenex form of universal types, where all the quantifiers
appear at the topmost level. Therefore, this is not a limitation
from a practical point of view. Another thing to note is that
the translation of definitions of inductive types is not shown
in Figure 3, although it is implemented in our Coq devel-
opment. Instead of giving the full translation in the paper
(which involves subtle de Bruijn indices manipulations), let
us consider an example. We continue with the finite maps
AcornMap. The tricky bit in the translation is to produce a cor-
rect type for each constructor considering the number of
parameters and taking into account that each Π-type binds
a new variable. Moreover, in MetaCoq the inductive type
being defined becomes a topmost variable as well.

The resulting MetaCoq definition of AcornMap (again, in the
concrete syntax, but with explicit indices in place of variable
names) looks as follows:
Inductive AcornMap (A1 A2 : Set) :=

| MNil : 2 1 0

| MCons : forall (_ : 1) (_ : 1) (_ : 4 3 2), 5 4 3,

Let us consider the type of MNil. The index 2 refers to the
topmost variable being the inductive type itself, index 1 refers
to the parameter A1 and 0 to the parameter A2.
Our Coq development contains the definition of AcornMap

using the deep embedding as well as standard operations
of finite maps.9 Moreover, we demonstrate how one can
covert definitions, given as a deep embedding, to regular
Coq definitions by translating and unquoting them. In the
same time, one can run programs directly on deep embedding
using the interpreter (Figure 2).

2.4 Translation Soundness

Since the development of the meta-theory of Coq itself is
one of the aims of MetaCoq we can use this development
to show that the semantics of λsmart agrees with its trans-
lation to MetaCoq (on terminating programs). The idea is
to compare the results of the evaluation of λsmart expres-
sions with the weak head call-by-value evaluation relation
of MetaCoq up to the appropriate conversion of values. This
conversion of values is a non-trivial procedure: λsmart val-
ues contain closures, while the MetaCoq evaluation relation
is substitution based and produces a subset of terms in the
weak head normal form. Therefore, if we want to eventually
convert λsmart values to MetaCoq terms, first, we need to
substitute environments into the closures’ bodies. E.g. for
vClosLam(ρ,x ,τ , e)we need to substitute all the values from
ρ into e . This is not possible to do directly, because we cannot
substitute values into expressions. Thus, we need to convert
all the values to expressions in the environment ρ. But this,
in turn, requires substituting environments in closures again.
To break this circle, we take inspiration from [11] and first
define substitution functions purely on λsmart expressions
and types:

τ [−] : env expr→ option type

e[−] : env expr→ option expr

These functions implement parallel substitution of the envi-
ronment represented as a list of expressions. Unfortunately,
these functions are partial, due to the fact that we use one en-
vironment for term-level values and for type-level-values.We
can make this function total by imposing a well-formedness
condition. With these substitution operations we now can
define a conversion procedure from λsmart values back to
expressions:

of_val(vClosLam(ρ,x ,τ , e))
def
= let ρ ′ := map of_val ρ in

(λx : τ .e)[ρ ′]

of_val(vClosFix(ρ, f ,x ,τ1,τ2, e))
def
= let ρ ′ := map of_val ρ in

(fix f x : τ1 → τ2 = e)[ρ ′]

of_val(vConstr(I ,C,v1 . . .vn ))
def
=

CI of_val(v1) . . . of_val(vn )

9See theories/examples/FinMap.v file in our Coq development
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J−Kt : global_env × expr→ term

JiKt
Σ

def
= i

Jλx : τ .eKt
Σ

def
= fun (x : Jτ KT ) ⇒ JeKt

Σ

JΛA.eKt
Σ

def
= fun (A : Set) ⇒ JeKt

Σ

Jlet x : τ = e1 in e2KtΣ
def
= let x : Jτ KT := Je1KtΣ in Je2KtΣ

Je1 e2KtΣ
def
= Je1KtΣ Je2KtΣ

JCI KtΣ
def
= let(C, _) := resolve_ctor(Σ,C, I )

in C I

J−KT : type→ term

JîKT def
= i

JIKT def
= I

Jτ KT def
= Jτ KT

J∀A.τ KT def
= forall (A : Set), Jτ KT

Jτ1 τ2KT
def
= Jτ1KT Jτ2KT

Jτ1 → τ2KT
def
= forall (_ :Jτ1KT ), ↑1 Jτ2KT

Jfix f x : τ1 → τ2 = eKt
Σ

def
= fix (f : forall (_ : Jτ1KT ), ↑1 Jτ2KT ) := fun (x : ↑1 Jτ1KT )⇒ JeKt

Σ

u
wwv

case e : I τ1 . . . τn return σ of

p1 → e1
. . .

pm → em

}
��~

Σ

def
=

match JeKt
Σ
as _ in I Jτ1KT . . . JτnKT return ↑1 JσKT with

branch(−→τi ,
−−−−−−→
pi → ei , c1)

. . .

branch(−→τi ,
−−−−−−→
pi → ei , cm )

where

c1 . . . cm
def
= resolve_ind(Σ, I ) −→τi

def
= τ1, . . . ,τn J−→τi KT

def
= Jτ1KT , . . . , JτnKT −−−−−−→

pi → ei
def
= p1 → e1, . . . ,pm → em

branch : (list type) × (list (pat × expr)) × constr→ term

branch(−→τi ,
−−−−−−→
pi → ei , c)

def
= let e := find(ctor_name(c),−−−−−−→pi → ei ) in

let σ1,σ2, . . . ,σk := ctor_args(c) in

fun (x1 : Jσ1KT
{

J−→τi KT
}

) (x2 : Jσ2KT
{

↑1 J−→τi KT
}

) . . . (xk : Jσk KT
{

↑k−1 J−→τi KT
}

) ⇒ JeKt
Σ

Figure 3. Translation to MetaCoq

of_val(vTyClos(ρ,A, e))
def
= letρ ′ := map of_val ρ in

(ΛA.e)[ρ ′]

of_val(vTy(τ ))
def
= τ

Once we have a way of converting values to expressions, we
can use the translation function J−Kt to produce MetaCoq
terms. This gives us a direct way of comparing the evaluation
results. Before we state the soundness theorem, we give an
overview of some important lemmas forming a core of the
proof. First of all, let us mention certain well-formedness
conditions for the environments involved in our definitions.
It is very important to carefully set up these conditions before
approaching the soundness proof.

Definition 1. For a global environment Σ : global_env,

evaluation environment ρ : env expr and λsmart value v : val
we say that

(WF.i) Σ is well-formed if for all definitions of inductive types,

each constructor type is closed for the given number of

parameters of the inductive type. E.g. if an inductive

type has n parameters, then the type of each constructor

has at most n free variables.

(WF.ii) ρ is well-formed wrt. an expression e when for any type

variables mentioned in e , if there is a corresponding

expression in ρ it corresponds to a type.

(WF.iii) a value v is well-formed if all the expressions and

types in the closures are appropriately closed wrt. corre-

sponding environments in closures and ρ is well-formed

in the sense of (WF.ii). E.g. for vClosLam(ρ,x ,τ , e)

we have: ρ contains only well-formed values, e has

at most |ρ | + 1 free variables (|ρ | is the size of ρ),

τ is closed type value, and ρ is well-formed wrt. e .

Additionally, for vConstr(I ,C, args), we require that

resolve_ctor(Σ, I ,C) returns some value.

Now, we will state several lemmas crucial for the sound-
ness proof. We will emphasise the use of the conditions
(WF.i),(WF.ii) and (WF.iii) throughout these lemmas. We will
use the following additional notations: t

{

ts
}

for the MetaCoq
parallel substitution as in the translation, JρKt

Σ
for translation

of all the expressions in ρ from λsmart to MetaCoq and |ρ | for
the environment size.

Lemma 1 (Environment substitution). For any λsmart expres-

sion e , well-formed global environment Σ (WF.i), well-formed

environment ρ wrt. e (WF.ii), such that all the expressions in ρ
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are closed the following holds

Je[ρ]Kt
Σ
= (JeKt

Σ
)
{

JρKt
Σ

}

Lemma 1 says that environment substitution commutes
with the translation. The well-formedness condition on ρ

ensures that the environment substitution functions are total.

Lemma 2 (Well-formed values). For any λsmart expression e ,

such that e has at most |ρ | free variables, number of steps n,

well-formed evaluation environment ρ, such that all the values

in ρ are well-formed, if evaluation of e terminates with some

valuev , i.e. evaln
Σ,ρ (e) = Okv , then the valuev is well-formed

((WF.iii)).

In the interpreter in Figure 2 we perform certain dynamic
checks denoted by validate and validate_branches. These
checks ensure that the condition (WF.iii) is satisfied for val-
ues produces by the interpreter. For well-typed expressions,
this condition would be automatically satisfied, but currently,
we focus on dynamic semantics.

We use the interpreter for λsmart expressions and call-by-
value evaluation relation of MetaCoq to state the soundness
theorem. The MetaCoq evaluation relation is a subrelation
of the transitive reflexive closure of the one-step reduction
relation and designed to represent the evaluation of ML lan-
guages at Coq level.

Theorem 1 (Soundness). For any λsmart expression e , num-

ber of steps n, well-formed global environment Σ, evaluation

environment ρ, such that all the values in ρ are well-formed

and e[ρ] is closed, if evaln
Σ,ρ (e) = Okv , for some valuev , then

Je[ρ]Kt
Σ
⇓ Jof_val(v)Kt

Σ
, where − ⇓ − is the call-by-value

evaluation relation of MetaCoq.

Proof. By induction on the number of steps of the interpreter
n. The base case is trivial, since we assume that the inter-
preter terminates. In the inductive step, the proof proceeds by
case analysis on e using Lemma 1 in the cases involving sub-
stitution (e.g. cases for let, application and case-expressions)
and using Lemma 2 to obtain premises that all the values in
ρ are well-formed required for applying induction hypothe-
ses. □

Corollary 1 (Soundness for closed expressions). For any
closed λsmart expression e , number of steps n, well-formed

global environment Σ, if evaln
Σ,[]
(e) = Ok v , then JeKt

Σ
⇓

Jof_val(v)Kt
Σ
.

Proof. By Theorem 1, using the fact that the empty evalua-
tion environment is trivially well-formed and the fact that
substituting the empty environment does not change e . □

We can see our translation to MetaCoq as some form of
denotational semantics. With this view, we can obtain the
adequacy result.

Theorem 2 (Adequacy for terminating programs). For any
closed λsmart expression e , well-formed global environment Σ, if

evaluation of e terminates with valuev in n steps and JeKt
Σ
⇓ t

for some term t , then t = Jof_val(v)Kt
Σ
.

Proof. By Corollary 1, using the fact that the MetaCoq eval-
uation relation is deterministic. □

Theorem 2 readily allows, for example, transferring pro-
gram equivalence from MetaCoq derivations to the λsmart

interpreter, provided that the values are not higher-order (i.e.
not closures).
In general, we conjecture that one can show adequacy

for any program for which there exists a derivation of the
MetaCoq big-step evaluation relation. Such a theorem should
be stated for well-typed λsmart expressions. Moreover, trans-
ferring properties proved for Coq functions to the corre-
sponding evaluations using the interpreter in general also
requires resorting to the typing argument. Currently, we
do not formalise static semantics and leave these points as
future work.
We assume that the unquote functionality of MetaCoq is

implemented correctly. From that perspective, unquote be-
comes part of the trusted computing base, but we would like
to emphasise that one of the goals of the MetaCoq project
is to implement the actual kernel of Coq in Coq itself. The
current MetaCoq data type term corresponds directly to the
constr data type from Coq’s kernel. Therefore, unquote is a
straightforward one-to-one mapping of MetaCoq data types
to the corresponding OCaml data types of Coq’s kernel. This
is in contrast to projects like hs-to-coq and coq-of-ocaml for
which the whole translation has to be trusted.

We developed a full formalisation of theorems and lem-
mas presented in this section in our framework in Coq. We
do not use any extra axioms throughout our development,
but Theorem 2 uses the determinism of the MetaCoq eval-
uation relation and the proof of this fact is currently under
development in the MetaCoq project. Being able to relate the
semantics of λsmart to the semantics of Coq through Coq’s
meta-theory formalisation gives strong guarantees that our
shallow embedding reflects the actual behaviour of λsmart.
The described approach provides a more principled way of
embedding of functional languages than the source-to-source
based approaches. Moreover, the translation involves manip-
ulation of de Bruijn indices, which is often quite hard to get
right. Various mistakes in non-trivial places were discovered
and fixed in the course of the formalisation.

3 The Crowdfunding Contract

As an example of our approach, we consider verification of
some properties of a crowdfunding contract (Figure 4). Such
a contract allows arbitrary users to donate money within a
deadline. If the crowdfunding goal is reached, the owner can
withdraw the total amount from the account after the dead-
line has passed. Also, users can withdraw their donations
after the deadline if the goal has not been reached. Contracts
like this are standard applications of smart contracts and
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appear in a number of tutorials.10 We follow the example of
Scilla [20] and adopt a variant of a crowdfunding contract as
a good instance to demonstrate our verification techniques.
We extensively use a new feature of Coq called łcustom

entriesž to provide a convenient notation for our deep em-
bedding.11 The program texts in Figure 4 written inside the
special brackets [\ ... \] , [| ... |] , and [! ... !] are parsed ac-
cording to the custom notation rules. For example, without
using notations the definition of action_syn looks as follows:

gdInd Action 0 [("Transfer", [(nAnon, tyInd "nat");

(nAnon, tyInd "nat")]);("Empty", [])] false.

This AST might be printed directly from the smart contract
AST by a simple procedure (as we use in Section 4). We start
by defining the required data structures such as State and
Msg meaning contract state and messages accepted by this
contract. We pre-generate string constants for correspond-
ing names of inductive types, constructors, etc. using the
MetaCoq template monad.12 This allows for more readable
presentation using our notation mechanism. Currently, we
use the nat type of Coq to represent account addresses and
currency. Eventually, these types will be replaced with cor-
responding formalisations of these primitive types. We also
use abbreviations for the result type and for certain types
from the blockchain infrastructure, which we are going to
explain later.
The trans_global_dec : global_dec→ mutual_inductive_entry

function takes the syntax of the data type declarations and
produces an element of mutual_inductive_entry Ð a MetaCoq
representation for inductive types. For each of our deeply em-
bedded data type definitions, we produce corresponding def-
initions of inductive types in Coq by using the Make Inductive

command of MetaCoq that łunquotesž given instances of
the mutual_inductive_entry type. Similar notation mechanism
is used to write programs using the deep embedding. The
definition of crowdfunding represents a syntax of the crowd-
funding contract. We translate the crowdfunding contract’s
AST into a MetaCoq AST using the expr_to_term : global_env

→ expr→ term function (corresponding to J−Kt
Σ
in Figure 3).

Here, global_env is a global environment containing declara-
tions of inductive types used in the function definition, expr
is a type of λsmart expressions, and term is a type of MetaCoq
terms. Before translating the λsmart expressions, we apply
the indexify function that converts named variables into de

10The idea of a crowdfunding contract appears under different names: crowd-
sale, Kickstarter-like contract, ICO contract, etc. Many Ethereum-related
resources contain variations of this idea in tutorials (including Solidity and
Vyper documentation). A simplified version of a crowdfunding contract is
also available for Liquidity: https://github.com/postables/Tezos-Developer-

Resources/blob/master/Examples/Crowdfund/Basic.ml
11Custom entries are available starting from Coq 8.9.0.
12The template monad is a part of the MetaCoq infrastructure. It allows
for interacting with Coq’s global environment: reading data about existing
definitions, adding new definitions, quoting/unquoting definitions, etc.

Bruijn indices. The result of these transformations is un-
quoted with the Make Definition command. After unquoting
the translated definitions, they are added to Coq’s global
environment and available for using as any other definitions.
The crowdfunding contract consists of two functions:

init : SimpleContractCallContext→ nat→ Z→ State_coq

receive : SimpleChain→ SimpleContractCallContext

→ Msg_coq→ State_coq

→ option (State_coq ×list SimpleActionBody)

Here SimpleChain is a łcontract’s viewž of a blockchain al-
lowing for accessing, among other parameters, current slot
number (used as a current time); SimpleContractCallContext
is a contract call context containing transferred amount,
sender’s address and other information available for inspec-
tion during the contract call. The type names with the łcoqž
suffix correspond to the unquoted data types from the Fig-
ure 4.

The init function sets up an initial state for a given dead-
line and goal. The receive function corresponds to a tran-
sition from a current state of the contract to a new state.
We will provide more details about the execution model in
Section 5. In the current section we focus on functional cor-
rectness properties using pre- and post-conditions. Similarly
to [20], we prove a number of properties of the contract
using the shallow embedding:

(P.i) the contract receive function preserves the following
invariant (unless the łdonež flag is set to true): the
sum of individual contributions is equal to the balance
recorded in the contract’s state;

(P.ii) the donations can be paid back to the backers if the
goal is not reached within a deadline;

(P.iii) donations are recorded correctly in the contract’s state;
(P.iv) backers cannot claim their contributions if the cam-

paign has succeeded.

The lemma corresponding to the property (P.i) is given below.

Lemma contract_state_consistent BC CallCtx msg :

{{ consistent_balance }}

receive BC CallCtx msg

{{ fun fin txs⇒ consistent_balance fin }}.

In the example above we use the Hoare triple notation
{{ P}}c{{Q}} to state pre- and post-conditions for the state before
and after the contract call. The post-condition also allows
for stating properties of outgoing transactions. We define
consistent_balance as follows:
Definition consistent_balance (lstate : State_coq) :=

∼ lstate.(done_coq)→

sum_map (donations_coq lstate) = balance_coq lstate.

i.e. the contract balance is consistent if before the contract
is marked as łdonež the sum of individual contributions is
equal to the balance.

Given the definitions above, one can read the lemma in the
following way: if the balance was consistent in some initial
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(* Defining AST using customised notations *)

(* Brackets [\ \] delimit the scope of global definitions, *)

(* [| |] the scope of programs, *)

(* [! !] the scope of types *)

(* Local state *)

Definition state_syn : global_dec :=
[\ record State :=

mkState { balance : Money ;
donations : Map;
owner : Address;
deadline : Nat;
done : Bool;
goal : Money } \].

Make Inductive (trans_global_dec state_syn).

(* Messages. Constructors do not take any arguments.*)

Definition msg_syn :=
[\ data Msg =

Donate [_]
| GetFunds [_]
| Claim [_] \].

Make Inductive (trans_global_dec msg_syn).

(* Abbreviations for types of the blockchain infrastructure *)

Notation SActionBody := "SimpleActionBody".
Notation SCtx := "SimpleContractCallContext".
Notation SChain := "SimpleChain".

(* An abbreviation for the return type *)

Notation "'Result'" := [! "prod" State ("list" "SimpleActionBody") !]
(in custom type at level 2).

(* Initialisation function *)

Definition crowdfunding_init : expr :=
[| \c : SCtx⇒ \dl : Nat⇒ \g : Money⇒
mkState 0z MNil dl (ctx_from c) False g |].

Make Definition init :=
(expr_to_term Σ' (indexify nil crowdfunding_init)).

(* The main functionality *)

Definition crowdfunding : expr :=
[| \chain : SChain⇒ \c : SCtx⇒ \m : Msg⇒ \s : State⇒

let bal : Money := balance s in

let now : Nat := cur_time chain in

let tx_amount : Money := amount c in

let sender : Address := ctx_from c in

let own : Address := owner s in

let accs : Map := donations s in

case m : Msg return Maybe Result of

| GetFunds→

if (own == sender) && (deadline s < now) && (goal s ≤bal) then
Just (Pair (mkState 0z accs own (deadline s) True (goal s))

[Transfer bal sender])
else Nothing : Maybe Result

| Donate→ if now ≤deadline s then

(case (mfind accs sender) : Maybe Money return Maybe Result of

| Just v→

let newmap : Map := madd sender (v + tx_amount) accs in
Just (Pair (mkState (tx_amount + bal) newmap own

(deadline s) (done s) (goal s)) Nil)
| Nothing→

let newmap : Map := madd sender tx_amount accs in

Just (Pair (mkState (tx_amount + bal) newmap own

(deadline s) (done s) (goal s)) Nil))
else Nothing : Maybe Result

| Claim→

if (deadline s < now) && (bal < goal s) && (∼ done s) then
(case (mfind accs sender) : Maybe Money return Maybe Result of

| Just v→ let newmap : Map := madd sender 0z accs in

Just (Pair(mkState (bal−v) newmap own (deadline s) (done s) (goal s))
[Transfer v sender])

| Nothing→ Nothing)
else Nothing : Maybe Result |].

Make Definition receive :=
(expr_to_term Σ' (indexify nil crowdfunding)).

Figure 4. The crowdfunding contract

state, then execution of the receive method gives a new state
in which the balance is again consistent. Note that the receive
is a łregularž Coq function and it is a shallow embedding of
the corresponding crowdfunding definition (Figure 4) produced
automatically by our translation.

4 Verifying Standard Library Functions

In our Coq development, we show how one can verifyAcorn
library code by proving λsmart functions (obtained by printing
the Acorn AST as λsmart AST) equivalent to the correspond-
ing functions from the standard library of Coq. In particular,
we provide an example of such a procedure for certain func-
tions on lists. The similar approach is mentioned as a strong
side of Coq in comparison to Liquid Haskell [27]. In gen-
eral, our framework will be applicable for verification of
standard libraries of various functional languages (not even
necessarily languages for smart contracts) since data types

such as lists, trees, finite maps, etc. are ubiquitous in func-
tional programming. In addition, λsmart is essentially a pure
fragment of various functional general-purpose languages
(ML-family, Elm) and smart contract languages (Liquidity,
Simplicity, Sophia13) making it a good target for integration.
Figure 5 shows how we obtain the shallow embedding

from the λsmart List module of the Acorn standard library.
We start with the concrete syntax (Figure 5a). Next, from
the Acorn parser, which is a part of the Concordium infras-
tructure, we obtain an AST. This AST is printed to obtain
a Coq representation (which we call λsmart) using a simple
printing procedure implemented in Haskell (Figure 5b). From
the module AST in Coq we produce a shallow embedding
by using the translation described in Section 2.3 and the
TemplateMonad of MetaCoq to unquote all the definitions in
the module. We use translateData and translateDefs function

13A functional smart contract language based on ReasonML:
https://dev.aepps.com/aepp-sdk-docs/Sophia.html
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to translate and unquote all the definitions of data types
and functions respectively. The translateDefs is defined as
follows:
Fixpoint translateDefs (Σ : global_env) (es : list (string ∗ expr))

: TemplateMonad unit:=

match es with

| [] ⇒ tmPrint "Done."

| (name, e) :: es' ⇒

coq_expr← tmEval all (expr_to_term Σ(reindexify 0 e)) ;;

print_nf ("Unquoted: " ++ name);;

tmMkDefinition name coq_expr;;

translateDefs Σes'

end.

The expr_to_term Σ corresponds to J−Kt
Σ
from Figure 3. In the

Acorn AST received from the parser, the index spaces for
type variables and term variables are separated. We merge
them into a single index space with the reindexify function.
Finally, tmMkDefinition unquotes the translatedMetaCoq term
and adds it to the Coq environment. After that, we can inter-
act with the unquoted definitions as if they were written by
hand.
On the shallow embedding we establish an isomorphism

between Acorn lists and Coq lists by defining two functions
to_acorn and from_acorn composing to identity. We can state
the following: foldr f a l = fold_right f a (from_acorn l) where
foldr is an Acorn function and fold_right comes from the
standard library of Coq. Similarly for the list concatenation.
Now, we can transfer properties of these functions without
the need of reproving:

Lemma foldr_concat (A B : Set) (f : A→ B→ B)

(l l' : AcornList A) (i : B) :

foldr f i (concat l l') = foldr f (foldr f i l') l.

Proof. autorewrite with hints;apply fold_right_app. Qed.

Currently, we use autorewrite to automate such proofs, but
in the future, we consider using more principled techniques
like [25].

5 The Execution Framework

In the context of blockchains smart contracts are small pro-
grams that are published to the nodes of the system and
associated with some address. Calls happen when a trans-
action is made to this address and nodes execute the pro-
gramwhen seeing such a transaction, which additionally can
contain input parameters to the program. Smart contracts
typically survive across calls and are thus long-lived stateful
objects that end up being executed multiple times. In addi-
tion smart contracts interact with the blockchain in various
ways, for example by making calls to other smart contracts
or by transferring money owned by the smart contract into
other accounts. The blockchain software thus keeps track
of extra information about the smart contract: its monetary
balance and the local state that the particular smart contract
wishes to persist between calls.

For these reasons it does not suffice to prove only func-
tional correctness properties if one wants to achieve strong
guarantees. As an example, we would like to prove that the
crowdfunding contract in Figure 4 has enough money when
it attempts to pay back the funders. Here simple functional
correctness is uninteresting since the crowdfunding contract
just takes its own balance as an input to the function. Instead
we would like a more comprehensive model of a blockchain
capturing the semantics of transactions that affect state such
as the balance. Such a model is given in [14] which provides
a Coq formalization of a small-step operational semantics
of blockchain execution. In this framework one can reason
about multiple deployed and interacting contracts with the
system tracking the balance and local state of each contract.
This small-step semantics is used to define a trace type, and
we can specify our stronger safety properties as properties
that hold for any blockchain state reachable through a trace.
Here we differentiate between blockchain state, which is
the full state of the entire blockchain, and local state, which
simply is the state that some particular contract wants the
blockchain to persist for it. Logically the local state of a
smart contract is one part of the blockchain state, but the
blockchain state also contains information like the balance
of each account in the system. By using the traces it is fur-
thermore possible to define temporal properties.
As a running example, we continue with the crowdfund-

ing contract from Section 3. We demonstrate how the prop-
erty (P.i) (Section 3) can be transformed into a safety property
and prove that the balance stored in the internal state of the
contract is always less or equal to the actual balance recorded
in the blockchain state.
In [14] contracts are represented as two functions init

and receive. The init function is called when the contract is
deployed and allows the contract to establish its initial local
state, while the receive function is called after deployment
when transactions are sent to the contract. These functions
are provided with information about the blockchain and
the receive function allows the contract to interact with the
blockchain more actively, such as by making transactions
to other accounts. The init and receive functions are partial
allowing contracts to communicate that they were called
with invalid parameters.

To be able to state lemmas, we need to do some extra work
by wrapping the functions init and receive from Figure 4
to have compatible signatures. In the execution framework,
these functions take Chain and ContractCallContext types that
are generalized over the type of addresses used. For our par-
ticular contract we use łplainž inductive types SimpleChain

and SimpleContractCallContext for which addresses are always
natural numbers. Thus we instantiate the execution frame-
work’s addresses as natural numbers and then define conver-
sion functions between the types from the execution frame-
work and the simple variants used by the crowdfunding

225



CPP ’20, January 20ś21, 2020, New Orleans, LA, USA Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters

module ListBase where

import Prod

import Bool

data List a = Nil [] | Cons [a, (List a)]

definition foldr a b (f :: a→ b→ b)

(initVal :: b) =

letrec go (xs :: List a) :: b =

case xs of

Nil→ initVal

Cons x xs'→ f x (go xs')

in go

. . .

(a) A fragment of Acorn code

Definition Data :=

[gdInd "List" 1 [("Nil_coq", []);

("Cons_coq", [(None, tyRel 0);

(None, (tyApp (tyInd "List")

(tyRel 0)))])] false].

Definition Functions :=

[("foldr", eTyLam "A" (eTyLam "A"

(eLambda "x" (tyArr (tyRel 1)

(tyArr (tyRel 0) (tyRel 0)))

(eLambda "x" (tyRel 0)

(eLetIn "f" (eFix "rec" "x" . . .)))));

. . .

(b)A fragment of λsmart AST (deep embed-
ding)

Import AcornProd.

Import AcornBool.

Run TemplateProgram (translateData Data).

Definition gEnv := StdLib.Σ ++ Data ++

AcornBool.Data ++ AcornProd.Data.

Run TemplateProgram (translateDefs gEnv

Functions).

Print foldr.

(* fun (A A0 : Set)(x : A → A0 → A0)

(x0 : A0) ⇒

fix rec (x1 : List A) : A0 :=

match x1 with

| @Nil_coq _ ⇒ x0

| @Cons_coq _ x2 x3 ⇒

x x2 (rec x3)

end *)

(c) Shallow embedding

Figure 5. Translating Acorn list functions to Coq

contract. In effect the resulting functions have the following
types:

wrapped_init : Chain→ ContractCallContext

→ Setup

→ option State_coq

wrapped_receive : Chain→ ContractCallContext

→ State_coq→ option Msg_coq

→ option (State_coq ∗ list ActionBody)

The Setup type here is just for packing together parameters
to the init function: deadline and goal. Another requirement
for using the execution framework is to provide instances
for serialisation/deserialisation of the local state (State_coq)
and messages (Msg_coq). These instances can be automatically
generated by the execution framework for the simple non-
recursive data types used in the crowdfunding contract. With
these instances in place, we can put together init and receive

to define a contract:
Definition cf_contract : Contract Setup Msg_coq State_coq :=

build_contract wrapped_init init_proper wrapped_receive

receive_proper.

Here init_proper and receive_proper are proofs showing
that the wrapped functions respect extensional equality on
the input parameters.
Now we are ready to formulate a safety property of the

crowdfunding contract:

Lemma cf_balance_consistent bstate cf_addr lstate :

reachable bstate→

env_contracts bstate cf_addr = Some (cf_contract :

WeakContract)→

cf_state bstate cf_addr = Some lstate→

consistent_balance lstate.

One can read this lemma as follows: for any reachable
blockchain state bstate, for an instance of the crowdfunding
contract deployed at the address cf_addrwith some local state
lstate, the balance recorded in the local state is consistent
with the map of individual contributions.

Next, we state and prove the following lemma:14

Lemma cf_backed_after_block {ChainBuilder : ChainBuilderType}

prev hd acts new cf_addr lstate :

builder_add_block prev hd acts = Some new→

env_contracts new cf_addr = Some (cf_contract : WeakContract)→

cf_state new cf_addr = Some lstate→

(account_balance (env_chain new) cf_addr>=balance_coq lstate)%Z.

This lemma says that after adding a new block,15 for any
instance of the crowdfunding contract deployed at the ad-
dress cf_addr, the actual contract balance (the one recorded
in the blockchain state) is greater or equal to the balance
recorded in the local state (used in all operations of the con-
tract’s łlogicž). In essence our integration with the execution
framework allows us to prove that the contract tracks its
own balance correctly even in the face of potential reen-
trancy or nontrivial interactions with other contracts and
accounts. This is unlike previous work such as [20] which
only considers a single contract in isolation, or [5], which
focuses on functional correctness properties. This lemma in
combination with cf_balance_consistent also gives a formal

14The lemma presented in the paper is a corollary of a more general theorem
which generalises over any outstanding actions, somewhat similarly to a
theorem about the Congress contract in [14]. We leave out the details here,
but full proofs of all the lemmas from this section is available in our Coq
development.
15For our purpose a block can be thought of as just a list of transactions.
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argument that the contract’s account has enough money to
cover all individual contributions.
Having our shallow embedding integrated with the exe-

cution framework, one can imagine many more important
safety and temporal properties of the contract. For example,
if the contract is funded, there will ever be at most one outgo-
ing transaction (to the owner), or if the contract is not funded
and the deadline has passed users can get their contributions
back. We leave this for future work.

6 Related Work

In this work, we focus on modern smart contract languages
based on a functional programming paradigm. In many cases,
various small errors in smart contracts can be ruled out by
the type systems of these languages. Capturing more serious
errors requires employing such techniques as deductive ver-
ification (for verification of concrete contracts) and formali-
sation of meta-theory (e.g. to ensure the soundness of type
systems). The formalisation of the Simplicity language [15]
features well-developed meta-theory, including a formalisa-
tion of the operational semantics of the Bit Machine allowing
for reasoning about computational resources. But this for-
malisation does not focus on using the shallow embedding
for proving properties of smart contracts and Simplicity is
a low-level language in comparison to λsmart (Simplicity is
a non-Turing-complete first-order language and does not
feature algebraic data types).

The work on Scilla [20] focuses on verification of concrete
smart contracts in Coq. It considers a crowdfunding smart
contract example translated into Coq by hand, and the cor-
respondence to Scilla’s meta-theory is not clear. A recent
paper on Scilla [21] gives a formal definition of the language
semantics, but does not feature mechanised proofs.
The formalisation of the Plutus Core language [7] cov-

ers the meta-theory of System F
µ
ω Ð a polymorphic lambda

calculus with higher-order kinds and iso-recursive types.
The main difference with λsmart is the absence of łnativež
inductive types. Another work on Plutus [17] shows how
to compile inductive types into System F

µ
ω . The compilation

procedure is type-preserving (which follows from the in-
trinsic encoding used in the formalisation); computational
soundness is left as future work.
The Michelson language formalisation [5] defines an in-

trinsic encoding of the language expression along with its
interpreter in Coq. The Coq development uses a weakest
precondition calculus on deeply-embedded Michelson ex-
pressions for smart contract verification. The semantics of
the Liquidity language given in [6] provides the rules for
compilation to Michelson, but there is no corresponding
formalisation in a proof assistant. The Sophia smart con-
tract language also belongs to the family of functional smart
contract languages based on ReasonML, but there is no cor-
responding formalisation available.

There are several well-developed formalisations of varia-
tions of System F [11, 12, 24, 28]. Among these, [11] features
an interpreter and helped us to shape our representation of
the language in Coq.
The purpose of the Program tactic in Coq [16, 22] is to

embed a functional language into Coq allowing for writing
specifications in types. Our work can be seen as the first step
towards making a certified version of such a tactic.
Finally, meta-programming techniques have also been

shown to be useful in the dependently typed setting in
other proof assistants: Agda’s Reflection library [26], meta-
programming frameworks in Lean [9] and Idris [8] employ
techniques similar to MetaCoq.

7 Conclusion and Future Work

We have presented the ConCert smart contract verification
framework. An important feature of our approach is the
ability to both develop a meta-theory of a smart contract lan-
guage and to conveniently reason about particular programs
(smart contracts). We proved soundness theorems relating
meta-theory of the smart contract language with the embed-
ding. Such an option is usually not available for source-to-
source translations. We applied our approach to the develop-
ment of an embedding of the λsmart smart contract language
and provided a verification example of a crowdfunding con-
tract starting from the contract’s AST. We also demonstrated
how our framework can be used to verify łstandard libraryž
functions common to functional programming languages by
proving them equivalent to Coq standard library functions.
Moreover, we integrated the shallow embedding with the
smart contract execution framework which gives access to
properties related to the interaction of smart contracts with
the underlying blockchain and with each other. Our work ad-
dresses a number of future work points from a recent Scilla
paper [21]: we provide a shallow embedding, integrate it
with a reasoning framework for safety and temporal proper-
ties and implement a reference evaluator in Coq. To the best
of our knowledge, the ConCert framework together with the
execution model described in Section 5 is the first develop-
ment allowing to verify functional smart contracts against a
blockchain execution model by automatic translation to the
shallow embedding.
Our framework is general enough to be applied to other

functional smart contract languages. We consider bench-
marking our development by developing łbackendsž for
translation of other languages (e.g. Liquidity, Simplicity, etc.).
Extending the formalisation of the λsmart language meta-
theory is also among our goals for the framework. An im-
portant bit of the meta-theory is the cost semantics allowing
for reasoning about łgasž. We would like to give a cost se-
mantics for the deep embedding and explore how it can be
extended on the shallow embedding. Another line of future
work is extending Acorn with specification annotations
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similar to the Russell language [22] used for Coq’s Program

tactic. That would allow programmers to specify properties
of smart contract that become obligations in the resulting
Coq translation.
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